skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiang, Yisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 22, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. Yu_Ding_Georgia_Institute_of_Technology (Ed.)
    The disease progression dynamics observed in electronic health records often reflect patients’ health condition evolution, holding the promise of enabling the development of clinical predictive models. These dynamics, however, generally display significant variability among patients, due to some critical factors (e.g., gender and age) and patient-level heterogeneity. Moreover, future health state may not only depend on the current state, but also more distant history states due to the complicated disease progression. To capture this complex transition behavior and address mixed effects in clinical prediction problems, we propose a novel and flexible Bayesian Mixed-Effect Higher-Order Hidden Markov Model (MHOHMM), and develop a classifier based on MHOHMMs. A range of MHOHMMs are designed to capture different data structures and the optimal one is identified by using the k-fold cross-validation approach. An effective two-stage Markov chain Monte Carlo (MCMC) sampling algorithm is designed for model inference. A simulation study is conducted to evaluate the performance of the proposed sampling algorithm and the MHOHMM-based classification method. The practical utility of the proposed framework is demonstrated by a case study on the acute hypotensive episode prediction for intensive care unit patients. Our results show that the MHOHMM-based framework provides good prediction performance. 
    more » « less
  4. null (Ed.)